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EXECUTIVE	SUMMARY	
	
Since	the	release	of	the	original	dataset,	extensive	work	and	evaluation	was	undertaken	to	
improve	 the	 distributions	 for	 surface	 temperature,	 relative	 humidity	 and	 wind	 speed.	
Emphasis	 was	 given	 to	 improving	 the	 bias	 correction	 of	 the	 distribution	 tails.	 Quantile	
mapping	 was	 still	 used	 for	 this	 version,	 except	 that	 empirical	 cumulative	 distribution	
functions	were	employed	rather	than	theoretical	distributions.	This	allowed	for	better	direct	
quantile	 matching	 between	 observations	 and	 model.	 Stricter	 quality	 control	 procedures	
were	 used	 on	 the	 observational	 data	 to	 remove	 additional	 erroneous	 values	 discovered	
after	further	testing.	
	
Specific	 methodology	 modifications	 were	 undertaken	 that	 provided	 substantial	
improvements	to	the	dataset.	First,	a	careful	QC	of	the	observation	dataset	was	required	to	
remove	 unrealistic	 or	 unlikely	 values,	 since	 these	 would	 heavily	 influence	 the	 empirical	
distribution	tails.	Second,	it	was	necessary	to	make	sure	that	observation	locations	were	not	
related	to	model	water	grid	points	since	these	would	bias	the	correction.	Third,	because	of	
diurnal,	seasonal,	and	local	physical	characteristics	of	the	observation	stations	(e.g.,	terrain),	
it	 was	 important	 to	 develop	 mapping	 functions	 for	 each	 hour	 by	 month.	 Fourth,	 much	
emphasis	 in	 assessing	 the	 correction	 was	 given	 the	 distribution	 tails,	 since	 this	 region	 is	
quite	important	for	bushfire	analyses.	Fifth,	the	spatial	interpolation	of	correction	across	the	
grid	 required	 a	 balance	 of	 weighting	 the	 station	 grid	 point	 to	 account	 for	 local	
characteristics	and	its	influence	on	neighbouring	stations.	
	
This	 supplemental	 report	 describes	 the	 methods	 used	 to	 generate	 Version	 2	 of	 the	 Fire	
weather	 climatology	 dataset	 for	 Victoria.	 Version	 2	 replaces	 Version	 1,	 and	 users	 should	
only	 work	 with	 this	 new	 version	 of	 the	 dataset	 given	 the	 substantial	 improvements	 that	
were	 made,	 particularly	 in	 the	 reduction	 of	 bias	 at	 the	 highest	 wind	 speeds	 and	 lowest	
relative	 humidity	 extremes	 of	 their	 distributions,	 and	 consequently	 substantially	 higher	
extreme	values	of	the	Forest	Fire	Danger	Index	(FFDI).	
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1 BACKGROUND	
	
Climatology	data	of	fire	weather	across	the	 landscape	can	provide	science-based	evidence	
for	 informing	strategic	decisions	to	ameliorate	the	impacts	(at	times	extreme)	of	bushfires	
on	community	socio-economic	wellbeing	and	to	sustain	ecosystem	health	and	functions.	A	
long-term	climatology	 requires	 spatial	and	 temporal	data	 that	are	consistent	 to	 represent	
the	 landscape	 in	 sufficient	 detail	 to	 be	 useful	 for	 fire	 weather	 studies	 and	management	
purposes.	To	address	this	 inhomogeneity	problem	for	analyses	of	a	variety	of	fire	weather	
interests	and	 to	provide	a	dataset	 for	management	decision-support,	 a	homogeneous	41-
year	 (1972-2012),	 hourly	 interval,	 4	 km	 gridded	 climate	 dataset	 for	 Victoria	 has	 been	
generated	 using	 a	 combination	 of	 mesoscale	 modelling,	 global	 reanalysis	 data,	 surface	
observations,	 and	 historic	 observed	 rainfall	 analyses.	 Hourly	 near-surface	 forecast	 fields	
were	 combined	 with	 Drought	 Factor	 (DF)	 fields	 calculated	 from	 the	 Australian	 Water	
Availability	Project	(AWAP)	rainfall	analyses	to	generate	fields	of	hourly	fire	danger	indices	
for	 each	 hour	 of	 the	 41-year	 period.	 A	 quantile	mapping	 (QM)	 bias	 correction	 technique	
utilizing	available	observations	during	2003-2012	was	used	to	ameliorate	any	model	biases	
in	 wind	 speed,	 temperature	 and	 relative	 humidity.	 Extensive	 evaluation	 was	 undertaken	
including	 both	 quantitative	 and	 case	 study	 qualitative	 assessments.	 The	 final	 dataset	
includes	 4-km	 surface	 hourly	 temperature,	 relative	 humidity,	wind	 speed,	wind	 direction,	
Forest	 Fire	Danger	 Index	 (FFDI),	 and	daily	 drought	 factor	 (DF)	 and	Keetch-Byram	Drought	
Index	(KBDI),	and	a	32-level	full	three-dimensional	volume	atmosphere.	
	
Brown	et	al.	 (2015)	describes	 in	detail	Version	1	of	 the	dataset.	This	document	should	be	
referred	 to	 for	other	details	about	 the	project	and	methods,	as	well	as	 important	caveats	
when	using	the	dataset.	

2 METHODS	
	
Figure	 1	 shows	 the	 process	 flowchart	 for	 creation	 of	 the	 Victoria	 gridded	 climatology	
dataset.	 The	WRF	model	 is	 initialized	with	 global	 reanalyses	with	 the	 primary	 outputs	 of	
surface	 temperature,	 relative	 humidity	 and	 wind	 speed,	 along	 with	 numerous	 other	
elements	 and	 the	 full	 3-D	 atmospheric	 volume.	 From	 these	 data	 empirical	 cumulative	
distribution	 functions	 (ECDF)	were	determined	 for	grid	points	corresponding	 to	Automatic	
Weather	 Station	 (AWS)	 hourly	 observations.	 ECDFs	were	 also	 computed	 for	 each	 station.	
Stricter	 quality	 control	 (QC)	methods	were	 applied	 to	 the	 observed	 data	 than	 in	 the	 first	
version.	 Next,	 quantile	 mapping	 (QM)	 and	 bias	 correction	 was	 done	 for	 each	 station	
location,	and	spatially	interpolated	across	the	grid.	All	of	these	steps	are	described	further	
below.	
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Fig.	1.	Process	flowchart	for	creation	of	the	Victoria	gridded	climatology	dataset.	
	
	

2.1 Bias	Correction	
	
A	statistical	bias	(mean	error	of	predicted	minus	observed)	from	atmospheric	models	is	not	
uncommon	due	to	combinations	of	physics	parameterizations,	spatial	resolution	and	input	
data	(initial	boundary	conditions	including	model	type	and	data	assimilation).	The	bias	may	
run	consistently	above	or	below	a	mean	observed	value,	and	thus	can	be	accounted	for	in	
the	final	model	output	using	a	statistical	correction.	However,	atmospheric	model	bias	can	
also	be	a	function	of	season	and	hour	of	the	day	due	to	both	model	physics	and	the	 local	
characteristics	 of	 the	 station	 siting	 (e.g.,	 elevation,	 aspect),	 requiring	 a	 more	 nuanced	
statistical	 correction	 approach.	 Figure	 2	 highlights	 the	 diurnal	 and	 seasonality	 of	
temperature	bias	(°C)	for	two	Automatic	Weather	Stations	(AWS)	in	Victoria,	Essendon	(top)	
and	 Bairnsdale	 (bottom).	 For	 Essendon,	 the	 overall	 magnitude	 of	 the	 bias	 ranges	 from	
approximately	 -0.5	 to	 +2.0°C,	 though	 nearly	 all	 months	 and	 hours	 have	 a	 positive	 bias.	
Bairnsdale	 shows	 a	much	 greater	 range	 of	 bias	 from	 approximately	 -2.75	 to	 +2.1°C.	 The	
seasonality	is	especially	highlighted	with	a	cool	bias	during	the	cool	season	(May-November)	
for	 the	 hours	 around	 0800	 through	 2100	 UTC,	 which	 are	 the	 local	 time	 night	 and	 early	
morning	 hours.	 But	 during	 the	warm	 season,	 the	 highest	warm	 bias	 is	 during	 0000-0300	
hours	 local	 time.	 These	 examples	 clearly	 highlight	 the	 need	 for	 hourly	 and	 seasonal	 bias	
correction.	
	

WRF	

Global	reanalysis	 Observa2ons	 QC	outliers/gross	errors	

Empirical	CDF	data	at	sta2on	
loca2ons	(by	hour,	by	month)	

Quan2le	mapping	at	sta2on	loca2ons	

Bias	correc2on	at	sta2on	loca2ons	

Interpolate	sta2on	network	to	regular	WRF	grid	

Corrected	WRF	grids	
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Drought	factor,	KBDI	 FFDI	

T	 RH	 W	
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Fig.	2.	Hourly	 (UTC)	and	monthly	 temperature	bias	 (°C)	 for	Essendon	 (top)	and	Bairnsdale	
(bottom).	The	colored	symbols	and	lines	correspond	to	a	particular	month.	
	
	
Quantile	 mapping	 (QM)	 for	 statistical	 adjustment	 of	 bias	 has	 been	 an	 accepted	
methodology	 for	 many	 years	 (e.g.,	 Panofsky	 and	 Brier	 1968),	 and	 has	 been	 used	 for	
numerous	global	climate	model	projection	bias	corrections	(e.g.,	Maurer	et	al.,	2010,	2014;	
Thrasher	 et	 al.,	 2012).	 QM	 adjusts	 a	 model	 value	 by	 mapping	 quantiles	 of	 the	 model	
distribution	 onto	 quantiles	 of	 the	 observation	 distribution.	 Figure	 3	 provides	 a	 visual	
schematic	 of	 the	 QM	 process	 (adapted	 from	 Pierce	 et	 al.,	 2015).	 The	 blue	 line	 shows	 a	
hypothetical	 normal	 distribution	 cumulative	 distribution	 function	 (CDF)	 of	 observed	
temperatures	and	their	corresponding	quantiles.	The	red	line	represents	a	hypothetical	CDF	
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of	 model	 temperatures	 and	 their	 corresponding	 quantiles.	 The	 black	 horizontal	 line	
highlights	 the	 0.2	 quantile	 value.	 The	 upward	 blue	 dashed	 line	 indicates	 that	 10°C	 is	 the	
model	0.2	quantile.	The	 left	pointing	short	arrow	shows	where	 the	0.2	quantile	 intersects	
the	 observed	 temperature	 value,	 and	 the	 downward	 pointing	 arrow	 shows	 the	 observed	
value	that	should	be	used	as	the	bias	corrected	value.	In	this	case,	the	WRF	10°C	becomes	
8.9°C.		
	
	

	
Fig.	3.	Example	illustrative	schematic	of	the	quantile	mapping	methodology.	
	
	
Our	bias	correction	process	was	a	multistep	approach	(Fig.	4).	The	first	step	was	to	gather	
hourly	 AWS	observations	 for	 stations	 in	 and	 bordering	Victoria.	 Data	 quality	 control	 (QC)	
was	applied	by	first	checking	for	obvious	unrealistic	values	(i.e.,	negative	relative	humidity	
and	wind	speed;	 relative	humidity	>	100%).	Next,	an	exploratory	data	analysis	 type	check	
was	applied	 to	 remove	 temperature	and	wind	 speed	outliers	 that	were	 likely	 in	error.	An	
interquartile	range	was	calculated	based	on	the	20th	and	80th	percentiles,	and	multiplied	by	
3;	this	value	was	then	added	to	the	80th	percentile	number	providing	a	threshold	for	which	
any	observation	exceeding	this	value	was	removed.	This	removed	extreme	values	that	were	
deemed	an	observation	error.	 Checking	of	 results	 from	 this	method	 revealed	 that	 indeed	
questionable	 values	 were	 properly	 flagged	 and	 subsequently	 removed.	 As	 an	 additional	
precaution	 for	 a	 temperature	 check,	 we	 checked	 that	 no	 station	 exceeded	 the	 official	
Bureau	 of	 Meteorology	 maximum	 and	 minimum	 state	 records.	 This	 process	 yielded	
maximum	and	minimum	values	allowable	by	hour	and	month	for	each	station.	Only	stations	
that	had	hourly	data	 for	at	 least	10	years	were	used	yielding	75	stations	available	 for	 the	
QM	 process	 (Fig.	 5).	 Appendix	 A	 provides	 the	 list	 of	 stations	 corresponding	 to	 the	 map	
station	index.	
	
Step	two	was	simply	to	match	the	AWS	location	to	the	nearest	WRF	land	grid	point.	Testing	
showed	that	using	water	grid	points	introduced	anomalous	values	in	the	QM;	therefore,	it	is	
important	to	use	only	land	grid	points	for	the	cumulative	distribution	functions.	
	
Step	 three	 was	 the	 computation	 of	 the	 climatological	 empirical	 cumulative	 distribution	
functions	 (ECDF)	 for	 each	 AWS	 and	 corresponding	 matched	 WRF	 grid	 point.	 Theoretical	
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distributions	(i.e.,	normal,	beta,	Weibell	for	temperature,	relative	humidity	and	wind	speed,	
respectively)	were	originally	tested,	but	 it	was	determined	that	these	did	not	satisfactorily	
provide	 estimates	 in	 the	 distribution	 tails	 during	 the	 mapping	 process.	 ECDFs	 were	
determined	for	each	hour	for	each	month	(288	functions	each	for	observation	and	model).	
For	example,	if	a	station	had	16	years	of	hourly	data,	then	an	ECDF	was	computed	for	hour	
00	over	all	of	the	16	years	of	January.	The	R	software	package	(R	Core	Team,	2013)	was	used	
to	empirically	 fit	 the	data	and	determine	 the	quantile	 values.	 Figure	6	 shows	an	example	
ECDF	 for	 January	 0400	 UTC	 for	 Melbourne	 airport.	 The	 red	 (observed)	 and	 blue	 (WRF)	
curves	are	for	the	period	2003-2012.	The	purple	(observed)	and	yellow	(WRF)	curves	are	for	
the	period	1972-2002.	Thus,	these	curves	show	both	the	difference	between	the	observed	
and	WRF	 ECDFs	 and	 between	 the	most	 recent	 decade	 versus	 the	 previous	 31	 years.	 The	
observed	 early	 period	 is	 cooler	 than	 the	 recent;	 this	 is	 partially	 reflected	 in	 the	 higher	
temperatures	for	WRF	starting	around	0.6	quantile.		
	
	

	
Fig.	4.	Flow	chart	for	the	bias	correction	process.	
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Fig.	5.	AWS	locations	for	hourly	stations	used	in	the	development	of	the	quantile	mapping	
for	bias	correction.	The	numbers	indicate	a	station	index	(see	Brown	et	al.,	(2016)	for	station	
information).	 Appendix	 A	 provides	 the	 list	 of	 stations	 corresponding	 to	 the	 map	 station	
index.	
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Fig	 6.	 Example	 empirical	 cumulative	 distribution	 function	 for	 Melbourne	 airport	 January	
0400	 UTC.	 The	 red	 (observed)	 and	 blue	 (WRF)	 curves	 are	 for	 the	 period	 2003-2012.	 The	
purple	(observed)	and	yellow	(WRF)	curves	are	for	the	period	1972-2002.	
	
	
The	next	steps	are	the	actual	bias	correction.	Each	of	these	steps	was	applied	to	all	available	
hours	 of	 station	 data.	 In	 step	 5,	 the	 model	 value	 was	 replaced	 with	 the	 ECDF	 matched	
station	value	per	the	process	described	for	Figure	4.	This	step	created	new	model	values	for	
each	station	location.	Step	6	created	a	difference	dataset	between	the	old	and	new	model	
values	 at	 all	 station	 locations.	 This	 allowed	 for	 spatially	 interpolating	 a	 difference	 field	
across	the	4-km	grid	(step	7).	The	“dsgrid2”	inverse	distance	weighting	spatial	interpolation	
algorithm	 with	 a	 power	 coefficient	 of	 1.5	 in	 the	 NCAR	 Command	 Language	 (NCL,	 2012)	
software	package	 Inverse	distance	weighting	 (IDW)	was	used	 for	 the	 spatial	 interpolation	
method.	The	power	coefficient	of	1.5	was	subjectively	chosen	based	upon	examining	output	
maps.	 It	 was	 felt	 that	 1.5	 allowed	 for	 reasonable	 weighting	 of	 nearby	 stations,	 but	 still	
retained	sufficient	local	information.	Higher	power	coefficient	values	localize	the	weighting,	
while	 lower	 values	distribute	 station	 influence	more	widely.	 Step	8	 simply	 subtracted	 the	
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interpolated	grid	from	the	original	grid	to	create	the	bias	corrected	grid	for	that	hour.	Figure	
7	shows	example	maps	of	two	difference	grids	representing	hours	0500	and	1700	local	time	
for	 7	 February	 2009.	 Note	 in	 this	 example	 that	 the	 early	morning	 hour	 of	 0500	 requires	
greater	corrections	especially	in	the	complex	terrain	region	than	for	the	late	afternoon	hour	
of	 1700.	 This	 is	 primarily	 due	 to	 the	model’s	 nighttime	physics	 and	 the	 local	 topographic	
influences	of	complex	terrain.	
	
	

	

	
Fig.	 7.	 Spatial	 interpolation	 examples	 from	 the	 quantile	 mapping	 bias	 correction	 for	 7	
February	2009	0500	local	time	(top)	and	1700	local	time	(bottom).	Shaded	values	are	WRF	
uncorrected	grid	point	values	minus	WRF	bias	corrected	grid	point	values	for	temperature	
(°C).	
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The	 final	 step	 in	 the	 process	 was	 a	 check	 of	 the	 final	 grid	 requiring	 that	 the	
maximum/minimum	values	of	the	new	grid	did	not	exceed	the	maximum/minimum	values	
of	station	observed	values.	This	step	kept	the	bias	corrected	values	as	estimates	across	the	
grid	 from	 exceeding	 the	 known	 observed	 values.	 It	 certainly	 is	 possible	 that	 locations	 in	
between	 stations	 could	 achieve	observed	 values	 exceeding	observed,	 but	 given	 there	 are	
not	 observations	 everywhere,	 it	was	 felt	 that	 this	 conservative	 approach	 still	 allowed	 for	
realistic	climatological	representations	while	keeping	the	model	values	within	ranges	known	
measurements.	
	
The	 results	 of	 the	bias	 correction	 can	be	partially	 assessed	by	 examining	 example	 station	
boxplots	 and	 scatterplots.	 Figure	 8	 (top)	 shows	 an	 example	 for	 the	 January	 2003-2012	
hourly	 (UTC)	 distribution	 of	 WRF	 minus	 observed	 temperature	 (°C)	 for	 the	 Melbourne	
airport	station	before	bias	correction.	Overall,	 the	bias	 is	quite	 low	(approximately	±0.5°C.	
The	 outlying	 points	 are	 due	 to	 likely	 due	 to	 a	 timing	 issue	 of	 fronts	 and	 other	 localized	
circulation	 patterns	 or	 phenomena	 that	WRF	missed,	 and	 these	 cannot	 be	 corrected	 for	
strictly	 from	 the	bias	 correction	process.	 The	bottom	plot	of	 Fig.	8	 shows	 the	distribution	
after	 the	 bias	 correction.	 Though	 not	 all	 medians	 fall	 on	 the	 zero	 line,	 the	 interquartile	
distribution	 is	more	 centered	 around	 zero	 degrees.	 The	majority	 of	 the	 outliers	 are	WRF	
over-predicting	temperature.	
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Fig.	 8.	 Boxplots	 of	 January	 2003-2012	 hourly	 (UTC)	 distribution	 of	 WRF	 minus	 observed	
temperature	(°C)	for	Melbourne	airport	before	bias	correction	(top)	and	WRF	bias	corrected	
minus	observed	(bottom).	
	
	
Figure	 9	 (top)	 shows	 the	 original	 bias	 for	 Melbourne	 airport	 2003-2012	 January	 relative	
humidity	(%).	The	median	bias	is	generally	small,	with	the	exception	hours	15-19	UTC,	which	
are	 early	morning	 hours	 in	 local	 time.	 The	 bias	 corrected	 values	 are	 also	 shown	 in	 Fig.	 9	
(bottom),	 and	 show	 good	 centering	 of	 the	 interquartile	 range	 around	 zero	 with	 median	
values	of	 0-1%.	 Similar	 to	 temperature,	 there	are	 some	outliers	 from	 frontal	 timing,	 local	
precipitation	events,	or	other	 factors	 for	which	 the	correction	method	cannot	adjust.	 The	
majority	of	these	outliers	are	WRF	under-predicting	relative	humidity.	
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Fig.	 9.	 Boxplots	 of	 January	 2003-2012	 hourly	 (UTC)	 distribution	 of	 WRF	 minus	 observed	
relative	 humidity	 (%)	 for	 Melbourne	 airport	 before	 bias	 correction	 (top)	 and	 WRF	 bias	
corrected	minus	observed	(bottom).	
	
	
Figure	10	(top)	shows	the	original	bias	for	Melbourne	airport	2003-2012	January	wind	speed	
(knots).	 The	median	 original	 bias	 is	 in	 the	 0-2	 knot	 range,	 though	 overall	WRF	 tended	 to	
under-predict	wind	speed.	Similar	to	Figs.	8	and	9,	there	are	outliers	related	to	other	model	
and	observation	 factors	 beyond	 just	 bias.	 Figure	 10	 (bottom)	 shows	overall	 improvement	
from	the	bias	correction.	Though	there	 is	still	a	slight	under-prediction,	the	median	values	
are	now	0-1	knots,	and	the	overall	distribution	is	more	condensed.	
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Fig.	 10.	 Boxplots	 of	 January	 2003-2012	 hourly	 (UTC)	 distribution	 of	WRF	minus	 observed	
wind	 speed	 (knots)	 for	 Melbourne	 airport	 before	 bias	 correction	 (top)	 and	 WRF	 bias	
corrected	minus	observed	(bottom).	
	
	
Figure	11	shows	example	scatterplots	for	WRF	predicted	versus	observed	temperature	for	
January	0000	UTC.	The	blue	circles	show	before	and	the	red	circles	after	QM	bias	correction,	
respectively.	Figure	11	(top)	is	for	Falls	Creek	where	both	scatterplots	show	a	well-defined	
linear	relationship,	but	the	before	correction	scatter	clearly	highlights	WRF	over-predicting	
temperature.	 The	 QM	 bias	 correction	 shows	 the	 values	 nicely	 aligned	 along	 the	 45°	
diagonal.	As	 shown	 in	 the	previous	boxplot	examples,	 there	 remain	 some	points	 in	which	
the	errors	could	not	be	substantially	reduced.	Figure	11	(middle)	shows	January	0000	UTC	
scatterplots	 for	 Horsham	 Aerodome.	 In	 this	 case	 there	 is	 little	 difference	 between	 the	
predicted	 versus	 observed	 points	 before	 and	 after	 correction,	 indicating	 that	 little	 QM	
correction	was	needed	 to	begin	with.	As	 a	 final	 example,	 Fig.	 11	 (bottom)	 shows	 January	
0000	UTC	scatterplots	for	Mount	Hotham,	where	there	was	a	clear	need	for	bias	correction,	
and	several	points	show	large	errors	between	predicted	and	observed.	Many	of	these	larger	
errors	 were	 reduced	 after	 correction,	 and	 generally	 the	 points	 align	 better	 along	 the	
diagonal.	
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Fig.	11.	 Scatterplots	of	WRF	predicted	versus	observed	 temperature	 (°C)	 for	 January	hour	
0000	UTC	 for	 the	 years	 2003-2012	 for	 the	 stations	 Falls	 Creek	 (top),	 Horsham	Aerodome	
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(middle),	 and	 Mount	 Hotham	 (bottom).	 Blue	 and	 red	 circles	 are	 before	 and	 after,	
respectively,	bias	correction.	

3 RESULTS	
3.1 VERSION	2	OF	THE	DATA	SET	
	
This	version	of	the	dataset	includes	hourly	temperature,	relative	humidity,	wind	speed,	wind	
direction,	and	FFDI,	and	daily	DF	and	KBDI	at	a	4-km	spatial	resolution	for	the	period	1972-
2012.	 The	 bias	 correction	 method	 described	 in	 Section	 2.1	 above	 was	 applied	 to	
temperature,	relative	humidity,	and	wind	speed.	Because	of	quality	issues	with	precipitation	
discussed	Brown	et	al.	(2015),	AWAP	data	were	used	instead	to	calculate	daily	DF	and	KBDI	
and	then	these	were	used	(in	combination	with	bias	corrected	hourly	temperature,	relative	
humidity,	and	wind	speed)	to	calculate	hourly	FFDI.	

3.2 CLIMATOLOGY	
	
Numerous	 climatology	 analyses	 can	 be	 undertaken	with	 this	 dataset,	 both	 for	 diagnostic	
and	summary	assessments.	Here	we	show	a	few	examples.	
	
The	homogeneous	4	km	grid	in	the	dataset	allows	for	a	variety	of	annual,	seasonal,	monthly,	
daily,	 and	 hourly	 spatial	 analyses.	 Figure	 12	 shows	 the	 average	 January	 temperature	 for	
0600	UTC	(upper	left)	and	1800	UTC	(lower	left),	and	corresponding	relative	humidity	in	the	
upper	 right	 and	 lower	 right,	 respectively.	 These	 times	 represent	 approximately	 the	 daily	
maximum	and	minimum	values	of	the	diurnal	cycle	during	January.	There	is	a	clear	diurnal	
cycle,	 with	 the	 topography	 modifying	 the	 absolute	 values	 of	 temperature,	 and	 a	 strong	
modification	 of	 the	 airmass	 south	 of	 the	 ranges	 by	 the	 effects	 of	 land-sea	 contrast.	 The	
relative	humidity	distribution	and	diurnal	variation	approximately	follows	the	temperature	
distribution	due	to	the	negative	relationship	of	relative	humidity	with	temperature,	but	the	
effects	of	topography	are	somewhat	different,	probably	due	to	the	normal	hydrolapse.	
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Fig.	12.	Average	January	temperature	and	relative	humidity	for	hour	0600	UTC	(top	left	and	
right)	 and	 hour	 1800	 UTC	 (bottom	 left	 and	 right).	 	 The	 geographic	 boundaries	 represent	
Bushfire	Risk	landscape	boundaries	used	by	DELWP.	
	
	
Figure	 13	 shows	 December-February	 all-time	 maximum	 temperature	 (left	 map)	 and	
minimum	relative	humidity	(right	map)	for	the	years	1972-2012.	The	highest	temperatures	
are	seen	in	the	northwest	portion	of	the	state,	and	the	coolest	 in	the	higher	elevations	of	
the	Great	Dividing	Range	in	the	East,	and	shows	the	sharp	temperature	contrast	along	the	
coast.	 For	 most	 of	 Victoria,	 the	 all-time	 lowest	 humidity	 values	 are	 below	 15%.	 It	 is	
interesting	that	there	is	less	variation	across	the	state	in	these	extreme	values	than	there	is	
in	 the	 average	 0600	 UTC	 (January)	 fields	 shown	 in	 Fig.	 12,	 indicating	 that	 even	 in	 the	
relatively	benign	climates,	such	as	that	of	east	Gippsland,	very	high	temperatures	and	very	
low	relative	humidities	can	occur.	
	
Comparing	Fig.	13	with	 the	equivalent	geographical	distributions	 for	version	1	of	 the	data	
set	 (Fig.33	of	Brown	et	 al	 2015)	 shows	 relatively	 subtle	differences	 for	 the	 temperatures,	
but	in	Version	2,	the	lowest	relative	humidity	is	lower	over	almost	the	whole	state	than	was	
that	 of	 Version	 1.	 This	 indicates	 the	 reduction	 in	 moist	 bias	 seen	 at	 the	 lowest	 relative	
humidity	values	in	Version	1.	
	

	
Fig.	 13.	 December-February	 all-time	 maximum	 temperature	 (left	 map)	 and	 minimum	
relative	humidity	(right	map)	for	the	years	1972-2012.	
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Figure	 14	 shows	 the	 1972-2012	 December-February	 maximum	 FFDI	 at	 each	 gridpoint..	
There	 is	 some	 small-scale	 variability	 in	 the	 northwest,	 and	 understanding	 this	 requires	
further	investigation,	but	it	appears	to	be	associated	with	very	isolated	high	wind	speeds	in	
the	WRF	data	set,	together	with	the	extreme	sensitivity	of	the	FFDI	to	variations	in	its	inputs	
when	the	values	reach	high	levels.	On	a	broader	scale,	the	highest	FFDI	values	are	seen	in	
the	northwestern	portion	of	Victoria,	extending	eastwards	 to	central	Victoria	north	of	 the	
ranges,	 and	 southwards	 in	 the	 far	west	of	 the	 state.	There	are	also	notable	areas	of	high	
values	south	of	the	central	highlands	just	west	of	Melbourne	and	extending	westward	along	
the	Barwon	Valley,	and	also	areas	of	relative	maximum	in	west	and	central	Gippsland	–	both	
these	 areas	 appear	 associated	with	 lee	 effects	 of	 the	 ranges.	 The	 lowest	 values	 are	 seen	
across	 the	 Great	 Dividing	 Range	 in	 the	 east	 where	 elevation	 effects	 keep	 temperatures	
lower,	and	in	far-east	Gippsland.		
	
Comparing	 these	values	with	 those	 from	Version	1	of	 the	data	set	 (Fig.	34	of	Brown	et	al	
2015)	 shows	 similar	 patterns,	 but	 with	 generally	 higher	 values,	 in	 Version	 2	 (note	 the	
differing	 data	 ranges	 in	 the	 two	 figures).	 This	 is	 the	 effect	 of	 the	 new	 QM	 better	
representing	 the	 high	 wind	 speed	 and	 low	 relative	 humidity	 tails	 of	 the	 respective	
distributions,	 with	 consequent	 effects	 on	 the	 resulting	 FFDI	 values.	 There	 are	 also	 some	
differences	between	 the	patterns	 along	 the	 coastline,	where	greater	 attention	 to	 station-
gridpoint	 interpolation	 issues	 has	 led	 to	 changes	 that	 provide	 a	 more	 realistic	
representation.	

	
Fig.	14.	December-February	highest	value	of	FFDI	for	the	years	1972-2012	from	the	gridded	
climatology.	
	

4 SUMMARY	AND	CONCLUSION	
	
Version	2	of	the	dataset	is	substantially	improved	over	Version	1,	and	thus	replaces	Version	
1.	The	improvements	were	due	to	stricter	QC	and	thresholds	in	the	observational	data,	and	
applying	empirical	cumulative	distribution	functions	for	the	quantile	mapping.	This	allowed	
for	 improved	 bias	 correction	 in	 the	 tails	 of	 the	 distribution,	 and	 thus	 have	 better	
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represented	extremes	in	both	the	individual	parameters	and	also	in	the	derived	FFDI	values.	
This	 is	 important	 for	 fire	 analyses	 since	 it	 is	 extreme	 fire	 events	 that	 are	 often	 of	 most	
interest.	
	

5 DATA	STORAGE	AND	ACCESS	
	
At	the	time	of	writing	this	report,	the	complete	dataset	is	stored	at	Monash	University	with	
a	 backup	 and	 at	 DRI.	 Two	 file	 groups	 are	 available,	 the	 original	 uncorrected	 fields	 for	 all	
levels,	and	bias	corrected	surface	fields	based	on	the	quantile	mapping	method	described	in	
this	report.	The	file	format	is	netCDF,	which	contains	relevant	metadata	as	part	of	the	data	
structure.	
	
Derived	 fields	 include	 the	 Drought	 Factor	 (DF),	 Keetch-Byram	 Drought	 Index	 (KBDI),	 and	
Forest	 Fire	Danger	 Index	 (FFDI).	 Daily	 precipitation	 from	 the	Australian	Water	 Availability	
Project	(AWAP)	dataset	was	used	for	the	DF	and	KBDI	calculations.	FFDI	was	calculated	using	
these	 outputs	 along	 with	 temperature,	 relative	 humidity	 and	 wind	 speed	 from	 the	WRF	
dataset.	These	derived	fields	are	also	in	the	netCDF	format.	
	
The	 full	 dataset	 (including	 the	upper-air	 fields)	 is	 approximately	 53TB	 in	 size.	 The	 surface	
fields	commonly	used	for	bushfire	analyses	 (e.g.,	 temperature,	relative	humidity	and	wind	
speed)	are	much	smaller,	 and	 formatted	 in	netCDF	allowing	 for	direct	 input	 into	Phoenix.	
Metadata	description	for	the	dataset	is	available	upon	request.	
	
Questions	and	comments	regarding	the	dataset	may	be	directed	to:	
Dr.	Tim	Brown;	tim.brown@dri.edu,	or	
Dr.	Sarah	Harris;	sarah.harris@monash.edu	
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8	 APPENDICES	
	

Appendix	 A:	 Table	 of	 AWS	 stations	 and	 years	 used	 in	 the	 bias	 correction	
analysis.	

	
Map	
ID	 Station	name	

Station	
ID	

Start	
year	

End	
year	

#	of	
years	

0	 CANBERRA	AIRPORT																																															 70014	 1996	 2010	 15.0	
1	 WAGGA	WAGGA	AMO																																														 72150	 1996	 2013	 17.3	
2	 MILDURA	AIRPORT																																											 76031	 1996	 2013	 17.5	
3	 EAST	SALE	AIRPORT																																																				 85072	 1996	 2013	 16.7	
4	 ESSENDON	AIRPORT																																																											86038	 2003	 2013	 10.5	
5	 MELBOURNE	REGIONAL	OFFICE																 86071	 1997	 2013	 13.2	
6	 MOORABBIN	AIRPORT																																													 86077	 1996	 2013	 17.3	
7	 MELBOURNE	AIRPORT																								 86282	 1996	 2013	 17.6	
8	 LAVERTON	RAAF																																																										 87031	 1996	 2013	 16.9	
9	 MANGALORE	AIRPORT																								 88109	 1996	 2013	 17.0	
10	 BALLARAT	AERODROME																												 89002	 2000	 2013	 12.9	
11	 CAPE	OTWAY	LIGHTHOUSE																																						 90015	 1996	 2013	 17.2	
12	 BRAIDWOOD	RACECOURSE	AWS																	 69132	 1996	 2013	 17.0	
13	 COOMA	AIRPORT	AWS																								 70217	 1996	 2013	 17.2	
14	 BOMBALA	AWS																																																						 70328	 1996	 2013	 16.9	
15	 BENDIGO	AIRPORT																																		 81123	 1996	 2013	 16.9	
16	 CERBERUS																																	 86361	 1996	 2013	 15.5	
17	 RHYLL																																				 86373	 1996	 2013	 17.2	
18	 GROVEDALE	(GEELONG	AIRPORT)														 87163	 1996	 2011	 15.6	
19	 SHEOAKS																																																						 87168	 1996	 2013	 16.7	
20	 HAMILTON	AIRPORT																									 90173	 1996	 2013	 16.5	
21	 PORT	FAIRY	AWS																											 90175	 1996	 2013	 17.3	
22	 MORTLAKE	RACECOURSE																						 90176	 1996	 2013	 16.7	
23	 BEGA	AWS																																	 69139	 1996	 2013	 16.7	
24	 GOULBURN	AIRPORT	AWS																					 70330	 1996	 2013	 17.0	
25	 ALBURY	AIRPORT	AWS																							 72160	 1996	 2013	 17.1	
26	 WANGARATTA	AERO																										 82138	 1996	 2013	 17.0	
27	 MALLACOOTA																															 84084	 1996	 2013	 16.7	
28	 COMBIENBAR	AWS																											 84143	 1996	 2013	 16.9	
29	 COLDSTREAM																															 86383	 1996	 2013	 17.1	
30	 AVALON	AIRPORT																											 87113	 1996	 2013	 16.9	
31	 WALLAN	(KILMORE	GAP)																					 88162	 1996	 2013	 15.4	
32	 PORTLAND	(CASHMORE	AIRPORT)														 90171	 1996	 2013	 16.9	
33	 CAPE	NELSON	LIGHTHOUSE																			 90184	 1997	 2013	 16.1	
34	 TUGGERANONG	(ISABELLA	PLAINS)	AWS								 70339	 1996	 2013	 16.9	
35	 CABRAMURRA	SMHEA	AWS																					 72161	 1996	 2013	 16.0	
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36	 KHANCOBAN	AWS																																																			 72162	 1996	 2013	 15.9	
37	 SHEPPARTON	AIRPORT																							 81125	 1996	 2013	 16.8	
38	 HUNTERS	HILL																													 82139	 1996	 2013	 17.0	
39	 MOUNT	BULLER																													 83024	 1996	 2013	 14.0	
40	 FALLS	CREEK																														 83084	 1996	 2013	 16.6	
41	 MOUNT	HOTHAM																													 83085	 1996	 2013	 16.0	
42	 GELANTIPY																																 84142	 1996	 2013	 17.1	
43	 MOUNT	NOWA	NOWA																																											 84144	 1996	 2013	 17.3	
44	 MOUNT	BAW	BAW																												 85291	 1996	 2013	 14.2	
45	 MOUNT	MOORNAPA																											 85296	 1996	 2013	 17.0	
46	 SCORESBY	RESEARCH	INSTITUTE														 86104	 1996	 2013	 16.6	
47	 FRANKSTON	AWS																												 86371	 1996	 2013	 17.3	
48	 FERNY	CREEK	(DUNNS	HILL)																	 86372	 1996	 2011	 15.5	
49	 EILDON	FIRE	TOWER																								 88164	 1996	 2013	 17.1	
50	 COONAWARRA																																																							 26091	 1997	 2013	 14.9	
51	 HAY	CSIRO	AWS																																																	 75175	 1996	 2007	 10.1	
52	 WALPEUP	RESEARCH																									 76064	 1998	 2013	 14.5	
53	 SWAN	HILL	AERODROME																																							 77094	 1997	 2013	 15.9	
54	 LONGERENONG																																																													79028	 1997	 2013	 16.0	
55	 STAWELL	AERODROME																																															 79105	 1996	 2013	 17.2	
56	 POINT	WILSON																																																										 87166	 1996	 2008	 11.6	
57	 REDESDALE																																																						 88051	 1997	 2013	 14.4	
58	 LOOKOUT	HILL																																																				 89105	 1996	 2007	 10.9	
59	 AIREYS	INLET																													 90180	 1996	 2013	 17.3	
60	 MERIMBULA	AIRPORT	AWS																																											69147	 1998	 2013	 14.9	
61	 THREDBO	AWS																																																				 71032	 1998	 2013	 14.8	
62	 YANCO	AGRICULTURAL	INSTITUTE																									 74037	 1999	 2013	 13.4	
63	 YARRAWONGA																															 81124	 2002	 2013	 11.0	
64	 RUTHERGLEN	RESEARCH																						 82039	 1998	 2013	 15.1	
65	 DINNER	PLAIN	(MOUNT	HOTHAM	AIRPORT)																																							83055	 2000	 2013	 12.8	
66	 ORBOST																																			 84145	 2000	 2013	 12.6	
67	 BAIRNSDALE	AIRPORT																							 85279	 1997	 2013	 15.2	
68	 MORWELL	(LATROBE	VALLEY	AIRPORT)																														85280	 1997	 2013	 16.0	
69	 VIEWBANK	(ARPANSA)																																														 86068	 2000	 2013	 13.0	
70	 DENILIQUIN	AIRPORT	AWS																																								 74258	 1997	 2013	 16.0	
71	 NHILL	AERODROME																																																	 78015	 2003	 2013	 10.1	
72	 HORSHAM	AERODROME																																							 79100	 1997	 2013	 15.3	
73	 COLAC	(MOUNT	GELLIBRAND)																																															90035	 2000	 2013	 12.8	
74	 WARRNAMBOOL	AIRPORT	NDB				 90186	 1998	 2013	 14.9	
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Appendix	B.	Dataset	description:	Fire	Weather	Climatology	for	Victoria	
	
Readme	version	date:	22	June	2016	
	
Dataset	version	“June	2016”.	
	
This	dataset	replaces	Version	1.	Substantial	improvements	to	the	dataset	were	made,	
especially	in	the	distribution	tails	due	to	1)	modifications	of	the	quantile	mapping	bias	
correction	method,	and	2)	additional	quality	control	checking	on	the	surface	station	
observations	used	for	the	bias	correction.	
	
This	dataset	includes	the	surface	elements	produced	from	the	Fire	Weather	Climatology	for	
Victoria	project	documented	in	the	report	by	Brown	et	al	(2015;	2016).	Please	see	that	
report	for	the	details	of	the	construction	and	applicability	of	these	data.	
	
The	dataset	period	is	January	1972	–	December	2012.	
	
Produced	using	model	version	“WRF	v3.5.1”	
	
The	temporal	scale	is	hourly.	
	
The	horizontal	resolution	is	4x4	km.	
	
Two	file	groups	are	available,	original	uncorrected	fields	and	bias	corrected	fields	based	on	
the	quantile	mapping	method	described	in	the	report.	
	
The	file	format	is	netCDF,	which	contains	relevant	metadata	as	part	of	the	data	structure.	
	
Derived	fields	include	the	Drought	Factor	(DF),	Keetch-Byram	Drought	Index	(KBDI),	and	
Forest	Fire	Danger	Index	(FFDI).	Daily	precipitation	from	the	Australian	Water	Availability	
Project	(AWAP)	dataset	was	used	for	the	DF	and	KBDI	calculations.	FFDI	was	calculated	using	
these	outputs	along	with	temperature,	relative	humidity	and	wind	speed	from	the	WRF	
dataset.	These	derived	fields	are	also	in	the	netCDF	format.	
	
The	dataset	was	constructed	primarily	for	climatological	analyses;	hourly	data	should	be	
examined	carefully	for	specific	case	study	analyses.	
	
WRF	surface	output	in	this	dataset:	
	
Variable	=	Temperature	(T)	
FillValue	=	-32767.0	
projectionType	=	"MERCATOR"	
level	=	"SFC"	
units	=	"C"	
gridType	=	"SCALAR"	
lonCentre	=	145.4	
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Variable	=	Relative	Humidity	(RH)	
FillValue	=	-32767.0	
projectionType	=	"MERCATOR"	
level	=	"SFC"	
units	=	"%"	
gridType	=	"SCALAR"	
lonCentre	=	145.4	
	
Variable	=	Wind	speed	(WSPD)	
FillValue	=	-127.0	
projectionType	=	"MERCATOR"	
level	=	"SFC"	
units	=	"kts"	
gridType	=	"VECTOR"	
lonCentre	=	145.4	
	
Variable	=	Wind	direction	(WDIR)	
FillValue	=	-127.0	
projectionType	=	"MERCATOR"	
level	=	"SFC"	
units	=	"degrees"	
gridType	=	"VECTOR"	
lonCentre	=	145.4	
	
Variable		=	Precipitation	(PPT)	
FillValue	=	-32767.0	
projectionType	=	"MERCATOR"	
level	=	"SFC"	
units	=	"mm"	
gridType	=	"SCALAR"	
lonCentre	=	135.0	
	
When	using	these	data,	please	cite	the	Brown	et	al	(2015;	2016):	
	
Brown,	T.,	G	Mills,	S.	Harris,	D.	Podnar,	H.	Reinbold,	and	M.	Fearon,	2015:	Fire	weather	
climatology	data	for	Victoria.	Final	project	report,	July	2015.	
	
Brown,	T.,	G	Mills,	S.	Harris,	D.	Podnar,	H.	Reinbold,	and	M.	Fearon,	2016:	Fire	weather	
climatology	data	for	Victoria.	Supplemental	report	for	Dataset	Version	2,	June	2016.	
	
	
For	questions	or	comments,	please	contact:	
	
Tim	Brown,	tim.brown@dri.edu	
Or	
Sarah	Harris,	sarah.harris@monash.edu	

	


